A radio frequency (RF) system could optimize the compliance by workers in handwashing in the effort of reducing cross infections that occur frequently in health care settings, food service and food processing facilities, hotels, cruise lines, spas/fitness centers/gyms, schools and homes.
Ching Ching Huang (Glendora, CA), Jennifer Peng (Huntington Beach, CA), Francine N. Hwang (Los Angeles, CA) developed a hand hygiene monitoring system that can identify the personnel, the frequency of his/her handwashing and hand cleaning with rinse-free disinfectant as well as the thoroughness of his/her handwashing effort each time The wrist band or the integral band carrying the wrist watch sized transmitter can be composed with material impregnated with very small (such as nano size) silver particles as an antibacterial agent to allow the band to remain germ-free, according to U.S. Patent Application 20090195385.
According to the publications of U.S. Center for Disease Control and Prevention (CDC), more than 2 million patients annually are inflicted in U.S. hospitals with hospital acquired infections (HAI), such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), Clostridium difficile, etc., and every year more than 80,000 patients (one every 6 minutes) die from these complications. More than 36 billion dollars loss a year can be attributed to HAI, and this number does not count the suffering of the patients and liability law suits.
By using an identification tag to collect the handwashing and cleaning data, it will proactively remind the wearer to undergo handwashing or cleaning as required to reduce propagation of infection. Furthermore, by using a unique identification method to accurately link the person conducting a hand hygiene event and by further linking all the identification tags with a central data processor, this invention can accurately report the compliance of workers to the hand hygiene guidelines issued by many governmental agencies and institutions, such as hospitals, nursing care facilities, outpatient clinics, food processing/delivery entities to reduce the incidences and costs resulting from cross infection by unclean hands.
The U.S. Department of Agriculture estimates that annually more than 79 million Americans suffer from food borne illnesses due to infectious germs, like, E Coli salmonella, hepatitis, etc., and hundreds of thousands require hospitalization. Again, billions of dollars in medical expenses and loss of business resulted yearly. Similar conditions occur in the hotel, spa, fitness center and cruise line industries, where infectious germs are propagated by clients and staff unknowingly through contacts or unclean surfaces.
The single most effective mean to stop or greatly reduce the cross infections, according to the CDC and the World Health Organization (WHO) after years of research and studies, is proper handwashing. Lately, the CDC has added hand cleaning with rinse-free disinfectant such as alcohol or alcohol gels as an effective alternative to handwashing to reduce the frequency of time-consuming handwashing procedures and therefore to improve hand hygiene compliance. Both organizations had issued comprehensive guidelines to healthcare workers and those working in the food processing and delivery industries as well as to the public on what constitutes as proper handwashing steps and hand cleaning to achieve effective killing of both transient and resident germs on hands to reduce cross infection.
However, even with all healthcare workers, especially physicians, having the common knowledge as well as the education and training that having clean hands is the key in reducing infection propagation, most of them do not conduct hand hygiene procedures at the thoroughness and frequency required. Without human monitoring, only 15% of doctors and 35% of nurses comply with the hand hygiene guidelines established by CDC for hospitals. Knowing someone is monitoring them, the percentage increases to around 50%. Worst of all, the intensive care units in hospital typically have the worst hand hygiene compliance record.
Many studies had been done by government agencies and hospitals to understand why the low compliance by the healthcare staff. Some tangible reasons were heavy work load, inconvenient location of wash basins, skin irritation and dryness due to frequent handwashing, the misconception of wearing gloves would eliminate the need of hand hygiene, etc. Very few cited lack of education, training or comprehension of the importance of hand hygiene in HAI reduction.
With those studies in mind, virtually every hospital has undergone improvements such as addition and relocation of wash basins (making handwashing convenient to all staff), addition of numerous rinse-free disinfectant dispensers in hallways and in patient rooms facilitating each staff member to clean his/her hands before handling a patient, increasing and strengthening periodic education session(s) emphasizing the importance of hand hygiene in reducing HAI and instituting extensive human monitoring. Yet the compliance rate only showed limited improvement when extensive and long term human monitoring was carried out.
This outcome clearly points to three critical factors toward increasing the hand hygiene compliance by healthcare workers: (1) continuous monitoring is a must; (2) timely reminder to the staff members to clean hands; (3) the monitoring process must not create additional work for healthcare workers or interrupt their busy work routines.
Huang, Peng and Hwang's invention describes a proactive hand hygiene monitoring system that utilizes:
1. An intelligent identification tag (can be in the form of a wrist band or an foot ankle band) assigned to each personnel to be monitored, which uses active RFID or a combination of passive and active RFID technology to interact with pre-programmed soap and rinse-free disinfectant dispensers as well as entry-exit sensors to record the time-date of each of this person's hand hygiene event and its thoroughness. Based on the ID tag's record and notification from an entry-exit sensor, it will also proactively prompt (by either vibration or low tone) the wearer to conduct hand cleaning prior to perform the next task, such as handling next patient or after handling raw meat.
2. Pre-programmed soap and rinse-free disinfectant dispensing (wall-mounted and/or counter top placed) units which will notify a user's ID tag via radio frequency of the dispensers' own unique identification codes after triggering by that user's ID tag
3. Entry-exit sensors which will detect the entering into or exiting from a controlled access area of one or more persons and inform each person's ID tag via radio frequency to record the time-date of the unique identification codes of the sensor as well as prompting each ID tag to check the last time of hand hygiene event of the wearer to determine whether a prompt for hand cleaning is required.
4. Data transfer stations which will download the recorded data from every personnel ID tag placed on their slots. They will verify the data integrity and convert them into a proper format (such as TCP/IP for Ethernet) for transmission to the central data processor (computer). They will also charge the internal battery of an ID tag to maintain its functionalities.
5. A central computer (which can be a personal computer or a server) which will receive the collected data from all the data transfer stations and processing them into a daily and/or periodic hand hygiene compliance report. It will also query the maintenance conditions of each component of this system (such as soap and rinse-free disinfectant refills as well as battery power level) and perform diagnostic to detect any malfunctions. During the data collection process, it will synchronize its clock with all the ID tags to assure the entire system is in synchronization with respect to timing of all events. It will also archive all the collected data and information.
Home
» Patent Application 20090195385.
» RF Hand Hygiene Monitoring System Proposed to Quell $36 Billion Hospital Acquired Infections Problem
RF Hand Hygiene Monitoring System Proposed to Quell $36 Billion Hospital Acquired Infections Problem
12/18/09 |
Labels:
Ching Ching Huang,
hand sanitation nanomedicine,
hospital acquired infections,
methicillin-resistant Staphylococcus aureus,
nanosilver disinfection,
Patent Application 20090195385.
Email This
BlogThis!
Share to X
Share to Facebook