Honeywell International Inc scientist Robert L. Bedard has created functional nano-layered hemostatic materials and devices which utilize a nano-coating of an oxide such as silica, a silicate or another effective oxide on a surface to accelerate blood clotting in mammalian animals. The hemostatic layer has a thickness that is effective for the hemostasis, yet can be made thin enough to result in a resorbable film which can either be applied to a biocompatible or resorbable device that can be used in surgical applications as well as in topical applications such as trauma, according to U.S. Patent Application 20090291124. The wound dresssing with nano-coatings of oxides are able to stop bleeding faster than conventional products.
There is a need for an effective hemostatic product that can be delivered in an easy to use form. Until recently, porous carriers or porous articles, e.g. non-woven fibrous articles containing molecular sieves and hydrophilic oxides had not been disclosed for use as hemostatic devices. Such hemostatic articles comprising molecular sieves have now been found to provide ease of application, effective hemostasis, and reduction in exposure of the patient to high temperature increases owing to high heats of adsorption. These products are also useful in surgical applications that were not available using a powdered molecular sieve or hydrophilic oxide product. There is a further need on some occasions for a hemostatic product that is effective for a period of time but that is able to dissolve or disintegrate in the body after the hemostatic effect is no longer needed.
There is a need for an effective hemostatic product that can be delivered in an easy to use form. Until recently, porous carriers or porous articles, e.g. non-woven fibrous articles containing molecular sieves and hydrophilic oxides had not been disclosed for use as hemostatic devices. Such hemostatic articles comprising molecular sieves have now been found to provide ease of application, effective hemostasis, and reduction in exposure of the patient to high temperature increases owing to high heats of adsorption. These products are also useful in surgical applications that were not available using a powdered molecular sieve or hydrophilic oxide product. There is a further need on some occasions for a hemostatic product that is effective for a period of time but that is able to dissolve or disintegrate in the body after the hemostatic effect is no longer needed.
Honeywell uses a layer as thin as a few atomic layers to as thick as hundreds of nanometers of silica, a silicate or another effective oxide on a variety of surfaces/materials to accelerate blood coagulation. Other effective oxides include GeO2, silicogermanates, AlPO4, silicoaluminophosphates, and Fe2O3. More than one of these oxides may be used. These ultra-thin layers provide advantages or functionality beyond those that are provided by prior art materials. These advantages include biological inertness after a short time due to the degradation of the ultra-thin oxide layer in vivo, revealing a biologically inert or resorbable surface underneath. An example is nano-SiO2 coated TiO2 particles, which themselves are active in coagulation, but become inert as the thin SiO2 layer leaches off over time.
Nano-thin SiO2 coatings can be deposited on a number of surfaces such as powders, substrate surfaces, fibers, nonwoven fabrics, polymers, granules or devices via a variety of processes such as sol-gel processes, vapor deposition, or spray processes. Vapor deposition processes that can be used include chemical vapor deposition, atomic layer deposition, plasma-enhanced chemical vapor deposition and electrophoretic deposition. The devices then are sterilized and packaged by appropriate methods.
Wounds are generally classified as acute or chronic in accordance with their healing tendencies. Acute wounds from trauma or surgery include wounds such as active bleeding wound sites, e.g., wounds that have detectable, unclotted blood. The rapid control of topical bleeding at active bleeding wound sites is of critical importance in wound management, especially for the management of trauma, e.g., as a result of military exercises or surgery.
Conventional approaches such as manual pressure, cauterization, or sutures may be time consuming and are not always effective in controlling bleeding. Trauma care has received great attention recently as United States troops on a daily basis face combat situations that result in wounds accompanied by significant blood loss. In many cases, the individual may have been able to survive the initial injury only to die of blood loss. Given the central role of hemostasis in trauma care, a great deal of attention has been focused on developing products that can rapidly induce clotting, stop the bleeding, form a tight bond to the wound surface, facilitate scab formation and be compatible with the host tissue.