Dow Corning Corporation (Midland, MI) reveals new material compositions for nano- and micro-lithography for device features as small as 10 nanometers (nm) in U.S. Patent 7,648,767. The patent was issued on January 19, 2010.
Due to a low viscosity, the material composition can be used in nano- and micro-lithography using conventional tools and equipment at low temperature (e.g. room temperature) and low pressure. This material composition is also suitable for newer, unique combined nanoimprint-and-photolithography techniques. Further, the material composition is particularly suitable to be spin-coated onto a variety of substrates where thickness and uniformity can be precisely controlled. High throughput can also be accomplished with this material composition, say inventors inventors Peng Fei Fu Lingjie Jay Guo Xing Cheng.
The material composition, which is used as a liquid resist, includes a first component comprising a monomer portion and at least one cationically polymerizable functional group, and a crosslinker reactive with the first component and comprising at least three cationically polymerizable functional groups.
The material composition also includes a cationic photoinitiator. Upon exposure to UV light, the material composition crosslinks via cure to form a cured resist film that is the reaction product of the first component, the crosslinker, and the cationic photoinitiator. An article includes a substrate layer and a resist layer formed on the substrate layer from the material composition.
Nanopatterning is an essential part of nanotechnology research for fabricating nanostructures. For these nanostructures and nanopatterning techniques to have significant practical value, low cost and high throughput nanopatterning techniques are indispensable.
Among many new emerging techniques that are aimed at lowering cost and increasing throughput, nanoimprint lithography (NIL) is regarded as a promising technique. NIL has the capability of patterning sub-10 nm structures, yet only entail simple equipment setup and easy processing. As such, NIL has been applied in the fabrication of numerous electric and optical devices, and also in wafer-scale processing.
There are, however, obstacles that prevent NIL from being an onmnipotent solution for the requirements associated with the next generation lithography of nanostructures. Convention NIL requires high temperature and high pressure during imprinting, and such conditions are especially unsuitable for microelectronics fabrication.
There are, however, obstacles that prevent NIL from being an onmnipotent solution for the requirements associated with the next generation lithography of nanostructures. Convention NIL requires high temperature and high pressure during imprinting, and such conditions are especially unsuitable for microelectronics fabrication.
Step-and-Flash Imprint Lithography (S-FIL) is another technique based on mechanical imprinting but uses a UV curable liquid material as a liquid resist. With S-FIL, the liquid resist is dispensed in droplet form onto a substrate, and then a template is brought into contact with the substrate and pressed against the substrate to spread out the liquid resist thereby forming a film of the liquid resist.