Translate

Rochester Institute of Technology Meticulously LIDAR Mapping Haitian Earthquake Damage



Credit: RIT, World Bank, ImageCat Inc.

In the aftermath of the Jan. 12 earthquake that struck Haiti’s capital, Port-au-Prince, scientists from Rochester Institute of Technology are sweeping the leveled city with high-tech imaging integrated into a small aircraft.

Funded by the World Bank, and in collaboration with ImageCat Inc., the five-day flight is meticulously mapping the disaster zone to aid in crisis management and eventual reconstruction of the city. The twin engine Piper Navajo, operated by Kucera International, an Ohio-based aerial mapping company, will fly from Aguadilla, Puerto Rico, and refuel daily in the Dominican Republic. The plane flies at 3,000 feet over Port-au-Prince and other areas badly hit by the earthquake. The operation began Jan. 21.

RIT is coupling an imaging system it created for the U.S. Forest Service to detect wildfires using high-resolution color imagery and thermal infrared with Kucera’s LIDAR topographical sensing system. LIDAR makes precise measurements with laser pulses and complements the other modalities in 3-D layered image maps. RIT scientist Jason Faulring is operating the camera system to survey damage, detect fires, chemical spills and surface contamination on lakes or ponds. George Tatalovich and James Bowers are the pilots flying for Kucera International. Bowers is operating the LIDAR sensor operator.

Recovery crews will use the information in the reconstruction of Haiti. RIT is coordinating closely with the Federal Emergency Management Agency, the National Oceanic and Atmospheric Association, the U.S. Geological Survey and non-governmental organizations that want to make use of this unique data set.

Thermal imaging provides relief and recovery agencies with critical insight not available from standard color photography. “You can tell how much liquid is in a storage tank with a thermal camera,” says Don McKeown, scientist in RIT’s Chester F. Carlson Center for Imaging Science and project manager. “You can make inferences of tanks that are full, tanks that are empty and tanks that are leaking.”

The LIDAR capability detects and measures collapsed buildings and standing structures damaged by the earthquake. At the request of the U.S. Geological Survey, Faulring is using LIDAR to map the fault line to estimate how much the earth moved. This information is critical to refinement of earthquake-risk prediction models.

Following each flight, Faulring transfers data from the equipment on the plane to a hard drive. He sends the data back to his colleagues at RIT using Internet access provided by the University of Puerto Rico (UPR) at Mayagüez with the help of professor Miguel Velez. NYSERNet, a non-profit Internet service provider, temporarily made available an unrestricted Internet2 pipe for the purpose of transferring files from Puerto Rico to Rochester. Brent Bartlett, imaging science staff researcher at RIT, also provided assistance transferring data collected in Haiti.

The complete RIT release is found here. 




Related Posts Plugin for WordPress, Blogger...